The Arabidopsis SKU5 gene encodes an extracellular glycosyl phosphatidylinositol-anchored glycoprotein involved in directional root growth.

نویسندگان

  • John C Sedbrook
  • Kathleen L Carroll
  • Kai F Hung
  • Patrick H Masson
  • Chris R Somerville
چکیده

To investigate how roots respond to directional cues, we characterized a T-DNA-tagged Arabidopsis mutant named sku5 in which the roots skewed and looped away from the normal downward direction of growth on inclined agar surfaces. sku5 roots and etiolated hypocotyls were slightly shorter than normal and exhibited a counterclockwise (left-handed) axial rotation bias. The surface-dependent skewing phenotype disappeared when the roots penetrated the agar surface, but the axial rotation defect persisted, revealing that these two directional growth processes are separable. The SKU5 gene belongs to a 19-member gene family designated SKS (SKU5 Similar) that is related structurally to the multiple-copper oxidases ascorbate oxidase and laccase. However, the SKS proteins lack several of the conserved copper binding motifs characteristic of copper oxidases, and no enzymatic function could be assigned to the SKU5 protein. Analysis of plants expressing SKU5 reporter constructs and protein gel blot analysis showed that SKU5 was expressed most strongly in expanding tissues. SKU5 was glycosylated and modified by glycosyl phosphatidylinositol and localized to both the plasma membrane and the cell wall. Our observations suggest that SKU5 affects two directional growth processes, possibly by participating in cell wall expansion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primary root growth, tissue expression and co-expression analysis of a receptor kinase mutant in Arabidopsis

There is no functional annotation for the majority of the several hundreds of receptor-like kinases in plants. A direct way of inferring the function of these proteins is to study the phenotype that results from loss of function mutants such as T-DNA mutant lines. In this research a function (phenotype) to At2g37050 gene that encodes a receptor like kinase in Arabidopsis T-DNA line was...

متن کامل

ABNORMAL POLLEN TUBE GUIDANCE1, an Endoplasmic Reticulum-Localized Mannosyltransferase Homolog of GLYCOSYLPHOSPHATIDYLINOSITOL10 in Yeast and PHOSPHATIDYLINOSITOL GLYCAN ANCHOR BIOSYNTHESIS B in Human, Is Required for Arabidopsis Pollen Tube Micropylar Guidance and Embryo Development1[W][OPEN]

The perception and response of pollen tubes to the female guidance signals are crucial for directional pollen tube growth inside female tissues, which leads to successful reproduction. In pursuing the mechanisms underlying this biological process, we identified the Arabidopsis (Arabidopsis thaliana) abnormal pollen tube guidance1 (aptg1) mutant, whose pollen tubes showed compromised micropylar ...

متن کامل

Identification of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A proteomic and genomic analysis.

In a recent bioinformatic analysis, we predicted the presence of multiple families of cell surface glycosylphosphatidylinositol (GPI)-anchored proteins (GAPs) in Arabidopsis (G.H.H. Borner, D.J. Sherrier, T.J. Stevens, I.T. Arkin, P. Dupree [2002] Plant Physiol 129: 486-499). A number of publications have since demonstrated the importance of predicted GAPs in diverse physiological processes inc...

متن کامل

The Arabidopsis Phosphatidylinositol Phosphate 5-Kinase PIP5K3 is a key regulator of root hair tip growth.

Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] functions as a site-specific signal on membranes to promote cytoskeletal reorganization and membrane trafficking. Localization of PtdIns(4,5)P2 to apices of growing root hairs and pollen tubes suggests that it plays an important role in tip growth. However, its regulation and mode of action remain unclear. We found that Arabidopsis thaliana ...

متن کامل

A glycophospholipid membrane anchor acts as an apical targeting signal in polarized epithelial cells

Glycosyl-phosphatidylinositol- (GPI) anchored proteins contain a large extracellular protein domain that is linked to the membrane via a glycosylated form of phosphatidylinositol. We recently reported the polarized apical distribution of all endogenous GPI-anchored proteins in the MDCK cell line (Lisanti, M. P., M. Sargiacomo, L. Graeve, A. R. Saltiel, and E. Rodriguez-Boulan. 1988. Proc. Natl....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 14 7  شماره 

صفحات  -

تاریخ انتشار 2002